Sequence analysis, identification of evolutionary conserved motifs and expression analysis of murine tcof1 provide further evidence for a potential function for the gene and its human homologue, TCOF1.

نویسندگان

  • J Dixon
  • K Hovanes
  • R Shiang
  • M J Dixon
چکیده

The gene mutated in Treacher Collins syndrome, an autosomal dominant disorder of facial development, has recently been cloned. While the function of the predicted protein, Treacle, is unknown, it has been shown to share a number of features with the highly phosphorylated nucleolar phosphoproteins, which play a role in nucleolar-cytoplasmic transport. In the current study, the murine homologue of the Treacher Collins syndrome gene has been isolated and shown to encode a low complexity, serine/alanine-rich protein of 133 kDa. Interspecies comparison indicates that the proteins display 61.5% identity, with the level of conservation being greatest in the regions of acidic/basic amino acid repeats and nuclear localization signals. These features are shared with the nucleolar phosphoproteins. Confirmation that the gene isolated in the current study is orthologous with the Treacher Collins syndrome gene was provided by the demonstration that it mapped to central mouse chromosome 18 in a conserved syntenic region with human chromosome 5q21-q33. Expression analysis in the mouse indicated that the gene was expressed in a wide variety of embryonic and adult tissues. Peak levels of expression in the developing embryo were observed at the edges of the neural folds immediately prior to fusion, and also in the developing branchial arches at the times of critical morphogenetic events. These observations support a role for the gene in the development of the craniofacial complex and provide further evidence that the gene encodes a protein which may be involved in nucleolar-cytoplasmic transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربری پروتیین‌های جدید در ساخت واکسن استافیلوکوکوس اورئوس

Background: Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the spread of antibiotic resistance. Novel potential targets for therapeutic antibodies are products of staphylococcal genes expressed during human infection. Previously, the secreted and surface-exposed proteins among seroreactive antigens have been discovered. Furthermore...

متن کامل

Analysis of NSP4 Gene and Its Association with Genotyping of Rotavirus Group A in Stool Samples

Background: Non-structural protein 4 (NSP4) is a critical protein for rotavirus (RV) replication and assembly. This protein has multiple domains and motifs that predispose its function and activity. NSP4 has a sequence divergence in human and animal RVs. Recently, 14 genotypes (E1-E14) of NSP4 have been identified, and E1 and E2 have been shown to be the most common genotypes in human. Methods:...

متن کامل

I-43: Identification of SOX3 as an XX MaleSex Reversal Gene in Mice and Jumans

Background: Mammals utilise an XX/XY system of sex determination in which the Y-linked gene SRY (Sexdetermining region Y) exerts a dominant masculinising influence on sexual development. Sex chromosome homology and comparative sequence studies suggest that SRY evolved from the related SOX3 gene on the X chromosome, although there is no direct functional evidence to support this hypothesis. The ...

متن کامل

P-121: Cloning and Expression of The Inosine Triphosphate Pyrophosphatase Gene Variant II in E.coli

Background Environmental and cellular inappropriate conditions can cause damages to cells nucleotide poll. Deamination and oxidation damages interfere with cell�s vital reactions. Inosine triphosphate pyrophosphatase (ITPA), an evolutionary conserved enzyme, plays a critical role in elimination of non-canonical bases. In human genome, the ITPA gene is located on chromosome 20 short arm and tran...

متن کامل

CLONING AND EXPRESSION OF LEISHMANOLYSIN GENE FROM LEISHMANIA MAJOR IN PRIMATE CELL LINES

Leishmanolysin is a worldwide disease that is caused by different species of the genus Leishmania. Leishmanolysin, One of the genes expressed by Leishmania, appears to be an ideal candidate for genetic vaccination. In this study, a full length sequence, which encodes Leishmanolysin functionally critical regions (amino acids 100-579), was cloned from a Leishmania strain endemic to Iran. Analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 1997